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Abstract—Dementia is a severe cognitive impairment that
affects the health of older adults. This paper analyzes diverse
speech-based features extracted from spoken languages and
selects the most discriminative ones for dementia detection.
We propose a two-step feature selection method to handle the
circumstance where the feature dimension is far larger than
the number of training samples. Recently, the performance of
dementia detection has been significantly improved by utilizing
Transformer-based models that automatically capture the lin-
guistic properties of spoken languages. We combine features
extracted from BERT with selected speech-based features to
enhance dementia detection performance. We propose a novel
strategy to model the transcriptions and their phonemes using
BERT and phoneme-BERT. The proposed method is evaluated
on a Cantonese dataset called CU-Marvel, which contains 185
healthy older adults, 98 older adults having minor neurocognitive
disorders (minor NCD), and 26 older adults suffering from major
NCD. Experimental results show that simultaneously fine-tuning
the BERT and phoneme-BERT can leverage information from
the recognized phonemes and make the detection performance
robust to automatic speech recognition errors. Simultaneous fine-
tuning of the BERT and phoneme-BERT models results in a 6%
improvement in F1 scores, compared to fine-tuning the BERT
model alone.
Index Terms: Dementia detection, feature selection, phoneme-
BERT

I. INTRODUCTION

Dementia is a severe cognitive impairment that may seri-
ously affect the health and daily lives of the afflicted indi-
viduals. The most common form of dementia is Alzheimer’s
Disease (AD). According to a report from the World Health
Organization,1 more than 55 million people live with dementia
worldwide, and there are nearly 10 million new cases every
year. The disease has a huge impact on the quality of life
of not only the patients but also their families and caretak-
ers. Fortunately, with effective detection of early dementia,
disease-modifying medications and interventions are possible
[1].

A. Related Works
Recently, automatic detection of dementia through speech

and language analyses has gathered attention in the re-

1https://www.who.int/news-room/fact-sheets/detail/dementia

search community. Some studies investigated different types
of speech-based features for dementia detection. For example,
Haider et al. [2] compared different types of paralinguistic fea-
tures – including the Geneva Minimalistic Acoustic Parameter
Set (eGeMAPS) [3], ComParE 2013 [4], Emobase [4], and
MRCG [5] – for dementia detection. Because the paralinguistic
features are high-dimensional, Pearson’s Correlation (PeaCorr)
tests were performed to reduce the feature dimensions.

In addition to speech-based features, transcription-based
features have also been used for dementia detection [6–
8]. For example, Qiao et al. [8] combined disfluency and
linguistic complexity features with features extracted from
Transformer-based models for AD detection. In [8], BERT
[9] and ERNIE [10] models were fine-tuned to capture the
language characteristics of the AD patients. The Transformer-
based models were also extensively investigated by Syed et
al. [6].

More recently, the fully-automatic assessment of dementia
from spontaneous speech has gathered more attention as it
does not require labor-intensive annotations or manual tran-
scriptions. In such a case, an automatic speech recognition
(ASR) system is utilized to transcribe the patients’ speech.
However, the erroneous transcriptions produced by the ASR
system could lead to high detection errors. To mitigate the
errors in ASR systems, the research community has developed
three strategies:

• Adapting ASR systems. In the Alzheimer’s Demen-
tia Recognition through Spontaneous Speech only
(ADReSSo) challenge [11], the conventional Kaldi-based
ASR system was adapted using multiple datasets con-
taining spontaneous speech [12]. Pappagari et al. [13]
first used a pre-trained ASpIRE model from Kaldi to
transcribe target domain data. To improve transcription
quality, they interpolated the language model (LM) of
ASpIRE with an LM trained on automatic transcriptions
of the target domain.

• Utilizing ASR lattices. An ASR lattice can provide time
alignments, recognized words, and confidence scores
for different hypotheses. Usually, we only consider the
best hypothesis that has the highest confidence score.
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Fig. 1. The architecture of our system for detecting dementia of Cantonese speakers. The recording A(i) is segmented using voice activity detection
into n segments. A two-step FS method identifies the most discriminative speech-based features. BERT and phoneme-BERT are jointly fine-tuned on ASR
transcriptions and their corresponding phonemes and are combined with the speech-based features to screen dementia patients. We concatenated the last three
hidden states of the BERT model, the last three hidden states of the phoneme-BERT model, and the selected features. The neural network classifier was
adopted for classification.

However, in addition to the best hypothesis, Pan et al.
[12] used multiple hypotheses to augment the input of
BERT to recognize AD patients. More importantly, they
concatenated the confidence scores and hidden states of
the BERT model, where the confidence scores were used
as a proxy measure of accuracy to inform the classifier
about the transcription quality.

• ASR correction. To extract more robust linguistic features
to distinguish AD patients, the transcribed words with low
confidence scores can be removed from the automatic
transcriptions [14]. In [12], the automatically transcribed
words with the confidence scores lower than 0.87 were
replaced by the unknown token <unk>.

B. Modeling Approach
The modeling approach presented in this paper is based

on the key insights from the above studies. Importantly, it
combines the most discriminative speech-based features and
the features extracted from Transformer-based models for
fully-automatic dementia screening. To overcome the data
sparsity problem, we propose a two-step feature selection
(FS) method to identify the most discriminative speech-based
features. Additionally, to mitigate the errors in ASR systems,
we propose a new strategy to jointly model the ASR transcripts
and their corresponding phonemes using the Transformer-
based models. The whole architecture is shown in Fig. 1.
The proposed system is evaluated on a Cantonese corpus
called CU-Marvel. The main contributions of this work are
summarized as follows:

1) We propose a two-step FS method to identify the most
discriminative speech-based features to screen dementia
patients.

2) Extensive experiments are conducted to explore the
possibilities of modelling phonemes using phoneme-
BERT to detect dementia. Results show that information
underlying the ASR phonemes is also indicative of
dementia.

3) We jointly model transcriptions and phonemes using
BERT and phoneme-BERT. Experimental results show
that simultaneously fine-tuning the BERT and phoneme-
BERT models can leverage information from the recog-
nized phonemes, making the dementia classifier more
robust to ASR errors.

II. METHODS

A. Selection of Speech-based Features

While various types of features have been used for dementia
detection, it is still unclear which features or their combina-
tions are more effective. We built on key insights from the
previous studies and utilized FS methods to find the most
effective speech-based features for dementia detection. The
extracted speech-based features are as follows.

• INTERSPEECH 2010 Paralinguistic Challenge Features
(IS10). IS10 [15] is a feature set for emotion recognition
and bipolar disorder recognition. In addition to the 32
low-level descriptors (LLDs) in INTERSPEECH 2009
Emotion Challenge, 44 LLDs were added to IS10, includ-
ing PCM loudness, eight log Mel-frequency bands, eight
line-spectral frequency pairs, fundamental frequency (F0)
envelope, voicing probability, jitter, and shimmer. Twelve
statistics (minimum, maximum, mean, range, etc.) of the
LLDs were computed, leading to a 1582-dimensional
feature vector per recording. IS10 was adopted as the



baseline feature set for the AD2021 Alzheimer’s Demen-
tia Recognition Challenge.2

• COVAREP. COVAREP [16] provides comprehensive
acoustic features, which include prosodic features (F0
and voicing), voice quality features, and spectral fea-
tures. We extracted COVAREP features at 100Hz; for
each recording, the mean, maximum, minimum, median,
standard deviation, skew, and kurtosis of the features were
computed, leading to a 518-dimensional feature vector
per recording. Rohanian et al. [17] used the COVAREP
features for cognitive impairment detection.

• eGeMAPS. The eGeMAPS [3] contains 88 features that
are selected based on their potential for characterizing
physiological changes in voice production.

• ComParE 2013. The ComParE 2013 [4] feature set was
adopted as a baseline feature set for AD detection in the
ADReSS [18] and ADReSSo [11] challenges, which con-
tains energy, spectral, mel-frequency cepstral coefficients
(MFCC), and voicing related LLDs.

• Emobase. The Emobase feature set [4] comprises MFCC,
F0, F0 envelope, line spectral pairs, etc. Wang et al. [19]
used the Emobase feature set in multi-modal attention
network for AD detection.

• MRCG. The MRCG features are multi-resolution cochlea-
gram features, which were used by Haider et al. [2] to
identify AD patients.

We combined all the feature listed above and adopted a
two-step FS approach to selecting dementia features. When the
feature dimension is very high, filter methods are indispensable
for obtaining a reduced feature set for the expensive FS
methods. Therefore, in Step 1, filter methods are utilized to
pre-screen the original features. Three filter methods were
evaluated in the experiments: Fisher’s discriminant ratio (FDR)
[20], PeaCorr tests, and mutual information (MutInfo). In
Step 2, a deep-learning-based feature ranking method called
dual-net feature ranking (DFR) [21] is applied to rank the
remaining features. Features with high feature importance
were then selected. DFR utilizes a dual-net architecture, where
two networks (called operator and selector) are trained to
simultaneously perform FS and dementia detection. Specif-
ically, the selector is trained to find multiple subsets of
features with minimal cardinality to predict the operator’s
performance, and the operator uses these feature subsets to
minimize classification errors. DFR uses all of the selector’s
parameters to determine the contribution of individual features
to the selector’s predictions. DFR shows good performance on
a dementia-related Cantonese dataset called JCCOCC-MoCA
[22].

B. Automatic Speech Recognition

In order to build a fully-automatic dementia screening
system, ASR was used for transcribing speech. Wav2vec 2.0
[23] (denoted as Wav2vec2 from now on) and HuBERT [24]
are self-supervised pre-trained models that can be utilized for

2https://github.com/THUsatlab/AD2021

end-to-end ASR. They can also learn powerful representations
from a large amount of unlabeled speech data. By fine-tuning
the models on a small amount of transcribed speech, they can
achieve similar performance as the traditional fully-supervised
ASR systems [23]. As there is no Cantonese pre-trained
version of Wav2vec2 or HuBERT, we adopted multilingual and
Chinese pre-trained versions of Wav2vec2 and HuBERT from
the Transformer Python library, including Wav2vec2-large-
xlsr,3 Wav2vec2-large-Chinese,4 and Hubert-large-Chinese.5

The Cantonese version of Common Voice Speech dataset
[25] (common-voice-zh-HK) was used for fine-tuning. The
PyCantonese library was utilized to convert the transcriptions
to corresponding phonemes.6 The acoustic models were end-
to-end fine-tuned on phone-level using connectionist temporal
classification loss. The fine-tuned acoustic models were tested
on common-voice-zh-HK test data. The phone error rate for
Wav2vec2-large-xlsr, Wav2vec2-large-Chinese, and Hubert-
large-Chinese were 0.087, 0.145, and 0.148, respectively.
Therefore, Wav2vec2-large-xlsr was selected for producing
phonemes using the CU-Marvel corpus as inputs. To generate
the ASR transcriptions, the phonemes were decoded using
a beam search decoder with a 4-gram KenLM trained on
common-voice-zh-HK.7

C. Modelling with Optimal Features
The BERT models were pre-trained on a large amount of

transcriptions using masked language modeling (MLM) as the
pre-training objective. As there is no pre-trained version of
BERT on Cantonese phonemes, we pre-trained our phoneme-
BERT using the common-voice-zh-HK Cantonese phonemes.
To form a better representation of the phonemes, we first
trained a Word Piece Encoder (WPE) with a vocabulary that
consists of 600 sub-word units8 using the common-voice-zh-
HK phonemes. The WPE was shown to work well on the
Cantonese phonemes. The trained WPE was then utilized
to encode the phonemes into multiple WPE-tokens. In our
pre-training settings, the token embeddings of WPE-tokens
were randomly initialized and the default configuration of the
original BERT was adopted. Following the pre-training regime
of BERT, we randomly masked 20% of WPE-tokens using
[MASK]. Finally, we pre-trained our phoneme-BERT using
the masked WPE-tokens as inputs and MLM as the learning
objective.

After pre-training our phoneme-BERT, we combined it
with a well pre-trained BERT model9 from the Transformer
library. We followed the strategy in [12] and concatenated
the last three hidden states of the BERT model with the
last three hidden states of the phoneme-BERT model, see

3https://huggingface.co/facebook/wav2vec2-large-xlsr-53
4https://huggingface.co/TencentGameMate/chinese-wav2vec2-large
5https://huggingface.co/TencentGameMate/chinese-hubert-large
6https://pycantonese.org/
7Decoding parameters: language model’s weight = 3.0, word score = 0.0,

number of best hypotheses = 1, and beam size = 500.
8We set the size of the vocabulary to 600 according to training procedure

of a byte pair encoder in [26].
9https://huggingface.co/bert-base-chinese



TABLE I
CHARACTERISTICS OF THE CU-MARVEL DATASET.

Variable HCs
(n = 185)

Dementia
(n = 124)

No. of Female 122 70
No. of Male 63 54
Age (years) 70.0 (66.0, 75.0) 78.0 (68.8, 83.0)
Education (years) 7.0 (6.0, 11.0) 6.0 (2.0, 9.25)
MoCA scores 23.0 (21.0, 26.0) 19.0 (15.0, 21.0)
Language Cantonese
Task Rabbit-story picture description
Manual transcriptions No
HCs: healthy older adults; MoCA: Montreal Cognitive Assessment.
The values are presented as median (interquartile range).

Fig. 1. To utilize information from the speech, we combined
the concatenated hidden states with the selected speech-based
features. Note that the selected speech-based features were
normalized to make them compatible with the characteristics
of the hidden states. A fully-connected neural network (FCNN)
classifier was built on top of the concatenated hidden states and
the selected features. Finally, the phoneme-BERT and BERT
were end-to-end fine-tuned on the ASR transcriptions and their
corresponding phonemes.

III. DATASETS AND EXPERIMENTAL SETTINGS

A. The CU-Marvel Cantonese Corpus

Cantonese is one of the major Chinese dialects that has
over 80 million native speakers in Southern China. The CU-
Marvel corpus was collected for the research on the screening
and monitoring of neurocognitive disorders based on spoken
language technologies. A series of cognitive tests, including
Montreal Cognitive Assessment (MoCA) tests and picture
description tests, were given to each participant for assessing
the mild cognitive impairment and dementia in older adults.
According to the assessment results, 309 participants were
divided into three groups: 185 healthy older adults (HCs),
98 older adults having minor neurocognitive disorders (minor
NCD), and 26 older adults suffering from major NCD. For
detecting dementia, we combined minor NCD and major NCD
into one category called “possible dementia”. A rabbit story
picture description task was selected for the experiments.
Table I shows the corpus’s characteristics.

B. Implementation Details

The phoneme-BERT was pre-trained on the common-voice-
zh-HK phonemes with a batch size of 512 for 3,000 steps. We
observed an increase in the validation loss when the number of
steps exceeded 3,000. 10-fold cross-validation (CV) was ap-
plied to the CU-Marvel dataset to determine the performance
of dementia detection. For each fold, we fine-tuned the models
with a batch size of 4 for 10 epochs. The maximum length
for word tokens and phoneme tokens was set to 512. This
setting aims to cover as many words and phonemes as possible
because most participants spoke a lot.

TABLE II
DETECTION PERFORMANCE (F1 SCORES) ON THE CU-MARVEL. THE

NUMBERS IN THE BRACKETS ARE FEATURE DIMENSIONS.

Feature set SVM DT KNN LDA FCNN
IS10 (1582) 0.521 0.559 0.528 0.517 0.590
COVAREP (518) 0.567 0.552 0.564 0.562 0.574
eGeMAPS (88) 0.571 0.582 0.525 0.539 0.614
ComparE (6373) 0.556 0.526 0.555 0.569 0.603
Emobase (988) 0.497 0.540 0.521 0.503 0.630
MRCG (768) 0.529 0.533 0.543 0.495 0.605
Mean 0.540 0.549 0.539 0.531 0.603
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Fig. 2. Variation in detection performance across the repeated CVs.

IV. RESULTS AND DISCUSSIONS

A. Performance of Different Feature Types

We first evaluated the recognition performance of all the
feature sets before FS. Five classifiers were adopted, including
k-nearest neighbor (k-NN) classifier (k = 1), linear support
vector machines (SVM, box constraint = 0.1), decision trees
(DT, leaf size = 20), linear discriminant analysis (LDA), and
FCNN classifier.10 We ran 50 repetitions of the 10-fold CV
based on different data splittings and averaged the performance
(F1 scores). The corresponding results are reported in Table II.
Table II shows that the FCNN classifier achieves the best
classification performance among all classifiers, that is, it
achieves the highest averaged F1 scores. Therefore, subsequent
experiments adopted the FCNN classifier.

We then combined all of the features to form the com-
bined features, which are 10317-dimensional vectors. When
conducting 10-fold CV on the combined features, large vari-
ation in detection performance across the repeated CVs was
observed, as illustrated in Fig. 2. The variation is caused by
applying random splitting on a small dataset for each CV, in-
ducing significantly different training partitions (TR) for each
run. To reduce the variation, we propose using an ensemble
procedure to stabilize the detection performance. Specifically,
we ran 10 repetitions of CV based on different data splittings.

10Except for the FCNN classifier, all other classifiers were adopted from
[2]. FCNN classifier settings: network architecture ‘feature dimension–128–
32–2”, batch size = 4, and epochs = 10.
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Fig. 4. Classification performance of the filter methods.

We then produced the predicted scores p(i, j) for subject j in
CV i, as shown in Fig. 3. Finally, we averaged the predicted
scores p(j) = (1/10)

∑10
i=1 p (i, j) over all the 10 CV for each

of the J subjects. After utilizing the ensemble procedure, we
obtained 0.670 accuracy (ACC) and 0.645 F1 scores, which
boosts the minimum F1 scores from 0.622 (Fig. 2) to 0.645.
Therefore, the subsequent experiments adopted the ensemble
procedure to stabilize classification performance.

B. Performance of Two-step FS

We followed the procedure described in Section II-A
to evaluate the performance of the filter methods (FDR,
PeaCorr, and MutInfo) on the combined features (10317-
dimensional vectors). On the TR of individual folds, we
applied the filter methods to reduce the feature dimension
to n = {100, 200, 300, 400, . . . , 1500}, as shown in Fig. 4.
It shows that FDR achieves the highest F1 scores (0.645)
when the feature dimension was reduced to 400. We then
applied DFR on the remaining 400 features to further select
more discriminative features, as shown in Table III. It shows
that when we reduced the feature dimension from 400 to
300, we further improved the ACC. This two-step procedure

TABLE III
CLASSIFICATION PERFORMANCE OF TWO-STEP FS. ACC: ACCURACY;

PRE: PRECISION; REC: RECALL.

Dimension 10-fold CV
ACC PRE REC F1

FDR + DFR
(Step 1 + Step 2)

150 0.650 0.634 0.631 0.632
200 0.663 0.648 0.626 0.627
250 0.628 0.623 0.628 0.622
300 0.680 0.668 0.643 0.645
350 0.634 0.622 0.624 0.623
400 0.663 0.648 0.643 0.645

significantly reduces the feature dimension and outperforms
the combined features.

C. Performance of Fine-tuning

We evaluated the performance on fine-tuning BERT,
phoneme-BERT, and the combination of BERT and phoneme-
BEET, as shown in Table IV (Row 2 to Row 4). Row 3
shows that fine-tuning phoneme-BERT on ASR phonemes
is beneficial to dementia detection. This indicates that some
abnormal information (e.g., phoneme disorder, phoneme rep-
etition, phoneme scarcity, and phoneme deficiency) in the
patients’ ASR phonemes is also indicative of dementia. Row
2 and Row 3 show that fine-tuning phoneme-BERT is better
than fine-tuning BERT. This maybe due to the insufficient
training of the LM. If we adapt the LM with an elderly corpus
containing similar picture description tasks, we may reduce the
ASR errors and improve detection performance.

Row 4 shows that it is better to fine-tune the phoneme-
BERT and BERT models jointly instead of fine-tuning the
BERT model only, indicating that the recognized phonemes
contain useful information for dementia detection. Our ASR
system produces phonemes, which are subsequently decoded
into words using a 4-gram KenLM. In Cantonese, a single
set of phonemes may correspond to multiple words, i.e.,
homophones. Despite the ASR system producing the correct
phonemes, in some instances, these phonemes are misinter-
preted, resulting in erroneous words. Though the ASR system
decodes some erroneous words, simultaneous fine-tuning of
BERT and phoneme-BERT enables the system to leverage
the corresponding correct phonemes, enhancing its overall
robustness to ASR errors.

D. Fine-tuning with Optimal Features

Finally, we fine-tuned BERT, phoneme-BERT and the com-
bination of phoneme-BERT and BERT with the optimal fea-
tures selected in Section IV-B. Table IV (Row 5 to Row 7)
shows that fine-tuning with the optimal features can improve
performance, no matter on which model. This strategy lever-
ages the optimal features to enhance the inputs to the classifier.
Row 7 shows that with the optimal feature set, simultaneously
fine-tuning the phoneme-BERT and BERT models achieves
the best detection performance.



TABLE IV
CLASSIFICATION PERFORMANCE ACHIEVED BY FINE-TUNING DIFFERENT MODELS. ACC: ACCURACY; PRE: PRECISION; REC: RECALL.

Row Fine-tuning 10-fold CV
FDR + DFR BERT Phoneme-BERT ACC PRE REC F1

1 0.680 0.668 0.643 0.645
2 0.608 0.591 0.591 0.591
3 0.650 0.635 0.634 0.634
4 0.667 0.654 0.655 0.654
5 0.693 0.680 0.666 0.669
6 0.683 0.670 0.671 0.671
7 0.696 0.685 0.687 0.686

V. CONCLUSIONS

We proposed a two-step feature selection method to identify
the most effective speech-based features to screen Cantonese-
speaking dementia patients. Fine-tuning Transformer-based
models with the selected speech-based features improved
performance further. We also fine-tuned BERT and phoneme-
BERT on transcriptions and their corresponding phonemes,
which made the dementia classifier more robust to ASR
errors. Fine-tuning both the BERT and phoneme-BERT models
together resulted in a 6% improvement in F1 scores, compared
to fine-tuning the BERT model alone.

REFERENCES

[1] J. L. Cummings, R. Doody, and C. Clark, “Disease-
modifying therapies for Alzheimer disease: Challenges
to early intervention,” Neurology, vol. 69, no. 16, pp.
1622–1634, Oct. 2007.

[2] F. Haider, S. de la Fuente, and S. Luz, “An assess-
ment of paralinguistic acoustic features for detection of
Alzheimer’s dementia in spontaneous speech,” IEEE J.
Sel. Top. Signal Process., vol. 14, no. 2, pp. 272–281,
Feb. 2020.

[3] F. Eyben, K. R. Scherer, B. W. Schuller, J. Sundberg,
E. Andre, C. Busso, L. Y. Devillers, J. Epps, P. Laukka,
S. S. Narayanan, and K. P. Truong, “The Geneva min-
imalistic acoustic parameter set (GeMAPS) for voice
research and affective computing,” IEEE Trans. Affect.
Comput., vol. 7, no. 2, pp. 190–202, Apr. 2016.
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